Zde se nacházíte:
Informace o publikaci
Properties of Quasi-Hermitian Operators Inherited from Self-Adjoint Operators
Autoři | |
---|---|
Rok publikování | 2013 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | International Journal of Theoretical Physics |
Fakulta / Pracoviště MU | |
Citace | |
www | http://link.springer.com/article/10.1007/s10773-012-1403-4 |
Doi | http://dx.doi.org/10.1007/s10773-012-1403-4 |
Obor | Obecná matematika |
Klíčová slova | Generalized effect algebra; Unbounded linear operators; Quasi-Hermitian operators; PT-symmetric quantum mechanics |
Přiložené soubory | |
Popis | We study a generalized effect algebra of unbounded linear operators in an infinite-dimensional complex Hilbert space. This algebra equipped with a certain kind of topology allows us to show that unbounded quasi-Hermitian operators can be expressed as a difference of two infinite sums of bounded quasi-Hermitian operators. |