Informace o publikaci

Parameterized Complexity Results for Exact Bayesian Network Structure Learning

Logo poskytovatele
Autoři

ORDYNIAK Sebastian SZEIDER Stefan

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1613/jair.3744
Obor Teorie informace
Klíčová slova probabilistic network structure learning; parameterized complexity;algorithms
Popis The propositional planning problem is a notoriously difficult computational problem, which remains hard even under strong syntactical and structural restrictions. Given its difficulty it becomes natural to study planning in the context of parameterized complexity. In this paper we continue the work initiated by Downey, Fellows and Stege on the parameterized complexity of planning with respect to the parameter ``length of the solution plan.'' We provide a complete classification of the parameterized complexity of the planning problem under two of the most prominent syntactical restrictions, i.e., the so called PUBS restrictions introduced by B{\"a}ckstr\"{o}m and Nebel and restrictions on the number of preconditions and effects as introduced by Bylander. We also determine which of the considered fixed-parameter tractable problems admit a polynomial kernel and which don't.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info