Informace o publikaci

Independent Component Analysis and Decision Trees for ECG Holter Recording De-Noising

Autoři

KUZILEK Jakub KREMEN Vaclav SOUČEK Filip LHOTSKA Lenka

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Plos one
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
Doi http://dx.doi.org/10.1371/journal.pone.0098450
Obor Kardiovaskulární nemoci včetně kardiochirurgie
Klíčová slova ELECTROCARDIOGRAPHIC SIGNALS; REMOVING ARTIFACTS; REDUCTION; DATABASE; ALGORITHMS; DYNAMICS
Popis We have developed a method focusing on ECG signal de-noising using Independent component analysis (ICA). This approach combines JADE source separation and binary decision tree for identification and subsequent ECG noise removal. In order to to test the efficiency of this method comparison to standard filtering a wavelet-based de-noising method was used. Freely data available at Physionet medical data storage were evaluated. Evaluation criteria was root mean square error (RMSE) between original ECG and filtered data contaminated with artificial noise. Proposed algorithm achieved comparable result in terms of standard noises (power line interference, base line wander, EMG), but noticeably significantly better results were achieved when uncommon noise (electrode cable movement artefact) were compared.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info