Informace o publikaci

Lattice-valued bornological systems

Autoři

PASEKA Jan SOLOVJOVS Sergejs STEHLÍK Milan

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj Fuzzy Sets and Systems
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://dx.doi.org/10.1016/j.fss.2014.09.006
Doi http://dx.doi.org/10.1016/j.fss.2014.09.006
Obor Obecná matematika
Klíčová slova Adjoint functor; (Lattice-valued) bornological space; (Lattice-valued) topological system; Locale; Localification and spatialization of topological systems; Point-free topology; Reflective subcategory
Popis Motivated by the concept of lattice-valued topological system of J.T. Denniston, A. Melton, and S.E. Rodabaugh, which extends lattice-valued topological spaces, this paper introduces the notion of lattice-valued bornological system as a generalization of lattice-valued bornological spaces of M. Abel and A. Šostak. We aim at (and make the first steps towards) the theory, which will provide a common setting for both lattice-valued point-set and point-free bornology. In particular, we show the algebraic structure of the latter.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info