Zde se nacházíte:
Informace o publikaci
Constructing homotopy equivalences of chain complexes of free ZG-modules
Autoři | |
---|---|
Rok publikování | 2014 |
Druh | Článek ve sborníku |
Konference | An Alpine Expedition through Algebraic Topology |
Fakulta / Pracoviště MU | |
Citace | |
www | https://arxiv.org/pdf/1304.6771.pdf |
Obor | Obecná matematika |
Klíčová slova | chain complex; homotopy module; reduction; homotopy equivalence; transfer |
Popis | We describe a general method for algorithmic construction of G-equivariant chain homotopy equivalences from non-equivariant ones. As a consequence, we obtain an algorithm for computing equivariant (co)homology of Eilenberg-MacLane spaces K(pi,n), where pi is a finitely generated ZG-module. The results of this paper will be used in a forthcoming paper to construct equivariant Postnikov towers of simply connected spaces with free actions of a finite group $G$ and further to compute stable equivariant homotopy classes of maps between such spaces. The methods of this paper work for modules over any non-negatively graded differential graded algebra, whose underlying graded abelian group is free with 1 as one of the generators. |
Související projekty: |