Informace o publikaci

Constructing homotopy equivalences of chain complexes of free ZG-modules

Logo poskytovatele
Autoři

VOKŘÍNEK Lukáš

Rok publikování 2014
Druh Článek ve sborníku
Konference An Alpine Expedition through Algebraic Topology
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://arxiv.org/pdf/1304.6771.pdf
Obor Obecná matematika
Klíčová slova chain complex; homotopy module; reduction; homotopy equivalence; transfer
Popis We describe a general method for algorithmic construction of G-equivariant chain homotopy equivalences from non-equivariant ones. As a consequence, we obtain an algorithm for computing equivariant (co)homology of Eilenberg-MacLane spaces K(pi,n), where pi is a finitely generated ZG-module. The results of this paper will be used in a forthcoming paper to construct equivariant Postnikov towers of simply connected spaces with free actions of a finite group $G$ and further to compute stable equivariant homotopy classes of maps between such spaces. The methods of this paper work for modules over any non-negatively graded differential graded algebra, whose underlying graded abelian group is free with 1 as one of the generators.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info