Informace o publikaci

Motion Images: An Effective Representation of Motion Capture Data for Similarity Search

Logo poskytovatele
Autoři

ELIÁŠ Petr SEDMIDUBSKÝ Jan ZEZULA Pavel

Rok publikování 2015
Druh Článek ve sborníku
Konference Proceedings of 8th International Conference on Similarity Search and Applications (SISAP 2015), LNCS 9371
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-25087-8_24
Obor Informatika
Klíčová slova motion capture data; motion similarity; visualization; motion image; action classification
Popis The rapid development of motion capturing technologies has caused a massive usage of human motion data in a variety of fields, such as computer animation, gaming industry, medicine, sports and security. These technologies produce large volumes of complex spatio-temporal data which need to be effectively compared on the basis of similarity. In contrast to a traditional way of extracting numerical features, we propose a new idea to transform complex motion data into RGB images and compare them by content-based image retrieval methods. We see transformed RGB images as suitable application-independent features for their ability to preserve key aspects of performed motions. To demonstrate the usability of this idea, we evaluate a preliminary experiment that classifies 1,034 motions into 14 categories with the 87.4% precision.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info