Informace o publikaci

Asymptotic formulae for solutions of linear second--order difference equations

Autoři

ŘEHÁK Pavel

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj J. Difference Equ. Appl.
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
www http://dx.doi.org/10.1080/10236198.2015.1077815
Doi http://dx.doi.org/10.1080/10236198.2015.1077815
Obor Obecná matematika
Klíčová slova linear difference equation; asymptotic behavior; nonoscillatory solution; regularly varying sequence
Popis We study asymptotic behavior of solutions to the (nonoscillatory) linear difference equation $\Delta(r_k\Delta y_k)=p_k y_{k+1},$ where $p,r$ are positive sequences defined on $\{m,m+1,m+2,\dots\}\subset\Z$. We establish sufficient conditions (in terms of regular variation) for all eventually positive solutions to satisfy certain asymptotic formulae. As a by--product, we obtain regular variation of all these solutions and some other of their properties. Various related problems are discussed and several examples are given.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info