Zde se nacházíte:
Informace o publikaci
Genus of the cartesian product of triangles
Autoři | |
---|---|
Rok publikování | 2015 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Electronic Journal of Combinatorics |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Obecná matematika |
Klíčová slova | graph; cartesian product; genus; embedding; triangle; symmetric embedding; Cayley graph; Cayley map; genus range; group |
Popis | We investigate the orientable genus of G(n), the cartesian product of n triangles, with a particular attention paid to the two smallest unsolved cases n = 4 and 5. Using a lifting method we present a general construction of a low -genus embedding of G(n) using a low-genus embedding of G(n-1). Combining this method with a computer search and a careful analysis of face structure we show that 30 <= gamma (G(4)) <= 37 and 133 <= gamma(G(5)) <= 190. Moreover, our computer search resulted in more than 1300 non isomorphic minimum -genus embeddings of G(3). We also introduce genus range of a group and (strong) symmetric genus range of a Cayley graph and of a group. The (strong) symmetric genus range of irredundant Cayley graphs of Z(p)(n) is calculated for all odd primes p. |
Související projekty: |