Informace o publikaci

Insect immunity after invasion of entomopathogenic nematodes

Logo poskytovatele
Autoři

HYRŠL Pavel DOBEŠ Pavel AREFIN Badrul KUČEROVÁ Lucie MARKUS Robert ZHI Wang ŽUROVEC Michal THEOPOLD Ulrich

Rok publikování 2016
Druh Konferenční abstrakty
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis Entomopathogenic nematodes and their associated bacteria comprise together a highly pathogenic complex which is able to invade and kill insect host within two days. Both bacteria and nematodes produce a variety of factors interacting with the insect immune system and help to overcome host defences. The tripartite model (Drosophila, nematodes, bacteria) was established and used to show an immune function for candidate genes using different Drosophila mutants or RNAi lines with defects in clotting or other branches of the immune system. Microarray analysis was used to compare gene expression of Drosophila larvae infected by the entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens with non-infected larvae. The role of candidate genes, selected based on genomic comparison, in response towards nematobacterial complex was further evaluated by in vivo infection assays. We demonstrated an immune function during nematode infection for known clotting enzymes and substrates, recognition molecules and eicosanoids. In conclusion, we show that the Heterorhabditis/Photorhabdus infection model is suitable to identify regulators of innate immunity in insects. Our research is supported by research grants from the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), by grant from Ministry of Agriculture of Czech Republic (NAZV-KUS QJ1210047) and The Technology Agency of the Czech Republic (TA04020318).
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info