Informace o publikaci

Random Subspace Ensemble Artificial Neural Networks for Firstepisode Schizophrenia Classification

Autoři

VYŠKOVSKÝ Roman SCHWARZ Daniel JANOUŠOVÁ Eva KAŠPÁREK Tomáš

Rok publikování 2016
Druh Článek ve sborníku
Konference Annals of Computer Science and Information Systems, Volume 8 : Proceedings of the 2016 Federated Conference on Computer Science and Information Systems
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://fedcsis.org/proceedings/2016/drp/333.html
Doi http://dx.doi.org/10.15439/2016F333
Obor Informatika
Klíčová slova first-episode schizophrenia
Popis Computer-aided schizophrenia diagnosis is a difficult task that has been developing for last decades. Since traditional classifiers have not reached sufficient sensitivity and specificity, another possible way is combining the classifiers in ensembles. In this paper, we take advantage of random subspace ensemble method and combine it with multilayer perceptron (MLP) and support vector machines (SVM). Our experiment employs voxel-based morphometry to extract the grey matter densities from 52 images of first-episode schizophrenia patients and 52 healthy controls. MLP and SVM are adapted on random feature vectors taken from predefined feature pool and the classification results are based on their voting. Random feature ensemble method improved prediction of schizophrenia when short input feature vector (100 features) was used, however the performance was comparable with single classifiers based on bigger input feature vector (1000 and 10000 features).

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info