Informace o publikaci

Decaying solutions for discrete boundary value problems on the half line

Autoři

DOŠLÁ Zuzana MARINI Mauro MATUCCI Serena

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Difference Equations and Applications
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://www.tandfonline.com/doi/full/10.1080/10236198.2016.1190349
Doi http://dx.doi.org/10.1080/10236198.2016.1190349
Obor Obecná matematika
Klíčová slova p-Laplacian difference equations; decaying solutions; recessive solutions; functional equations; fixed point theorems in Fréchet spaces
Popis Some nonlocal boundary value problems, associated to a class of functional difference equations on unbounded domains, are considered by means of a new approach. Their solvability is obtained by using properties of the recessive solution to suitable half-linear difference equations, a half-linearization technique and a fixed point theorem in Frechét spaces. The result is applied to derive the existence of nonoscillatory solutions with initial and final data. Examples and open problems complete the paper.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info