Informace o publikaci

ConceptRank for search-based image annotation

Logo poskytovatele
Autoři

BUDÍKOVÁ Petra BATKO Michal ZEZULA Pavel

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj Multimedia Tools and Applications
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/article/10.1007/s11042-017-4777-8
Doi http://dx.doi.org/10.1007/s11042-017-4777-8
Obor Informatika
Klíčová slova Search-based image annotation; Content-based image retrieval; kNN classification; Biased random walk with restarts; Semantic analysis; ConceptRank
Popis Multimedia information is becoming an ubiquitous part of our lives, which brings an equally ubiquitous need for efficient multimedia retrieval. One of the possible solutions to this problem is to attach text descriptions to multimedia data objects, thus allowing users to utilize traditional text search mechanisms. Search-based annotation techniques attempt to determine the descriptive keywords by analyzing the descriptions of similar, already annotated multimedia objects, which are detected by content-based retrieval techniques. One of the main challenges of this approach is the extraction of semantically connected keywords from the possibly noisy descriptions of similar objects. In this paper, we address this challenge by proposing the ConceptRank, a new keyword ranking algorithm that exploits semantic relationships between candidate keywords and utilizes the random walk mechanism to compute the probability of individual candidates. The effectiveness of the ConceptRank algorithm is evaluated in context of web image annotation. We present a complex image annotation system that includes the ConceptRank component, and compare it to other state-of-the–art annotation techniques.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info