Informace o publikaci

Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers

Logo poskytovatele
Autoři

KURFÜRST Petr KRTIČKA Jiří

Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj Applications of Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www
Doi http://dx.doi.org/10.21136/AM.2017.0135-17
Obor Obecná matematika
Klíčová slova Eulerian hydrodynamics; finite volume; operator-split method; unsplit method; Roe's method; curvilinear coordinates
Popis We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info