Informace o publikaci

MAGERI: Computational pipeline for molecular-barcoded targeted resequencing

Logo poskytovatele
Autoři

SHUGAY Mikhail ZARETSKY A.R. SHAGIN D.A. SHAGINA I.A. VOLCHENKOV I.A. SHELENKOV A.A. LEBEDIN Mikhail BAGAEV D.V. LUKYANOV S. CHUDAKOV Dmitriy

Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj PLoS Computational Biology
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005480&type=printable
Doi http://dx.doi.org/10.1371/journal.pcbi.1005480
Klíčová slova CIRCULATING TUMOR DNA; THERAPEUTIC RESPONSE; IMMUNE REPERTOIRES; COLORECTAL-CANCER; SOMATIC MUTATION; SEQUENCING ERROR; RARE MUTATIONS; SOLID TUMORS; GENOME; PLASMA
Popis Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info