Informace o publikaci

Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds

Logo poskytovatele
Autoři

LYÓCSA Štefan MOLNÁR Peter

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj Energy
Fakulta / Pracoviště MU

Ekonomicko-správní fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0360544218308193#!
Doi http://dx.doi.org/10.1016/j.energy.2018.04.194
Klíčová slova Oil; Natural gas; Volatility forecasting; High-frequency data; ETF
Přiložené soubory
Popis This paper investigates volatility forecasting for crude oil and natural gas. The main objective of our research is to determine whether the heterogeneous autoregressive (HAR) model of Corsi (2009) can be outperformed by harnessing information from a related energy commodity. We find that on average, information from related commodity does not improve volatility forecasts, whether we consider a multivariate model, or various univariate models that include this information. However, superior volatility forecasts are produced by combining forecasts from various models. As a result, information from the related commodity can be still useful, because it allows us to construct wider range of possible models, and averaging across various models improves forecasts. Therefore, for somebody interested in precise volatility forecasts of crude oil or natural gas, we recommend to focus on model averaging instead of just including information from related commodity in a single forecast model.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info