Informace o publikaci

Elliptic equations with nonlinear absorption depending on the solution and its gradient

Autoři

MARCUS Moshe NGUYEN Phuoc-Tai

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj Proceedings of the London Mathematical Society
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms/pdv020
Doi http://dx.doi.org/10.1112/plms/pdv020
Klíčová slova quasilinear equations;boundary singularities;Radon measures;Borel measures;weak singularities;strong singularities;boundary trace;removability
Popis We study positive solutions of equation (E1) -Delta u + u(p)vertical bar del u vertical bar(q) = 0 (0 <= p, 0 <= q <= 2, p + q > 1) and (E-2) -Delta u + u(p) + vertical bar Delta u vertical bar(q) = 0 (p > 1, 1 < q <= 2) in a smooth bounded domain Omega subset of R-N. We obtain a sharp condition on p and q under which, for every positive, finite Borel measure mu on partial derivative Omega, there exists a solution such that u = mu on partial derivative Omega. Furthermore, if the condition mentioned above fails, then any isolated point singularity on partial derivative Omega is removable, namely, there is no positive solution that vanishes on partial derivative Omega everywhere except at one point. With respect to (E2), we also prove uniqueness and discuss solutions that blow up on a compact subset of partial derivative Omega. In both cases, we obtain a classification of positive solutions with an isolated boundary singularity. Finally, in Appendix A a uniqueness result for a class of quasilinear equations is provided. This class includes (E1) when p = 0 but not the general case.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info