Informace o publikaci

Schrödinger equations with singular potentials: linear and nonlinear boundary value problems

Autoři

MARCUS Moshe NGUYEN Phuoc-Tai

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematische Annalen
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www Full Text
Doi http://dx.doi.org/10.1007/s00208-018-1734-4
Klíčová slova Hardy potential; Martin kernel; moderate solutions; normalized boundary trace; critical exponent; good measures
Popis Let RN (N3) be a C2 bounded domain and F< subset of> be a C2 submanifold with dimension 0kN-2. Denote F=(,F), V=F-2and CH(V) the Hardy constant relative to V in . We study positive solutions of equations (LE) -LVu=0 and (NE) -LVu+f(u)=0 in where LV=+V, CH(V) and fC(R) is an odd, monotone increasing function. We extend the notion of normalized boundary trace introduced in Marcus and Nguyen (Ann Inst H. Poincare (C) Non Linear Anal 34:69-88, 2015) and employ it to investigate the linear equation (LE). Using these results we obtain properties of moderate solutions of (NE). Finally we determine a criterion for subcriticality of points on relative to f and study b.v.p. for (NE). In particular we establish existence and stability results when the data is concentrated on the set of subcritical points.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info