Zde se nacházíte:
Informace o publikaci
Stable, nanometer-thick oxygen-containing plasma polymer films suited for enhanced biosensing
Autoři | |
---|---|
Rok publikování | 2018 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Plasma Processes and Polymers |
Fakulta / Pracoviště MU | |
Citace | |
www | https://onlinelibrary.wiley.com/doi/full/10.1002/ppap.201800090 |
Doi | http://dx.doi.org/10.1002/ppap.201800090 |
Klíčová slova | functionality; immunosensing; nano-layers; plasma coating; surface plasmon resonance |
Popis | Stable surface functionalization is required in many applications such as in biosensing. For this purpose, hydrocarbon-based plasma polymer films (PPFs) were investigated by controlling cross-linking and film structure at the nanoscale, while functional groups were incorporated using a CO2/C2H4 low pressure plasma. In particular, an oxygen-rich termination layer of 1 nm (top layer) was gradually deposited onto a more cross-linked PPF (base layer) with varying thickness (<20 nm) yielding highly stable yet functional a-C:H:O films as compared to conventional oxygen-rich PPFs. Such stabilized nano-layers provided a homogeneous functionalization of Au-coated (flat) biochips as used for immunosensing as well as of nanostructured Au-coated surfaces explored for enhanced biosensing. The used periodic grating coated by the highly stable a-C:H:O nano-layer can be adjusted to the required environmental refractive index range yielding a distinct sensitivity enhancement for biosensing. |
Související projekty: |