Informace o publikaci

Factoring Personalization in Social Media Recommendations

Autoři

GE Mouzhi PERSIA Fabio

Rok publikování 2019
Druh Článek ve sborníku
Konference Proceedings of the 13th IEEE International Conference on Semantic Computing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1109/ICOSC.2019.8665624
Klíčová slova recommender systems; personalization
Popis Nowadays, since social media sites and online social networks have created big media data, it is thus complex and time-consuming for users to find the preferred social media from a large media catalog. Social media recommender systems are therefore emerged to recommend personalized media objects. However, most media recommender systems only focus on one aspect of social media. It is lacking a big picture of how to build an effective social media recommender system. Therefore, this paper tackles this challenge first for specifying the distinct features of media object that can be used for recommender systems, and then discusses five critical aspects that can affect the design of social media recommender systems. This paper further indicates how to assemble these critical aspects and concludes that when we apply traditional recommender algorithms in the media context, those are the critical aspects to improve and optimize social media recommneder systems.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info