Informace o publikaci

On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials

Autoři

GKIKAS Konstantinos T. NGUYEN Phuoc-Tai

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj JOURNAL OF DIFFERENTIAL EQUATIONS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www Full Text
Doi http://dx.doi.org/10.1016/j.jde.2018.07.060
Klíčová slova Hardy potential;Semilinear equations;Elliptic systems;Boundary trace
Popis Let Omega subset of R-N (N >= 3) be a bounded C-2 domain and delta(x) = dist (x, partial derivative Omega). Put L-mu = Delta + mu/delta(2) with mu > 0. In this paper, we provide various necessary and sufficient conditions for the existence of weak solutions to -L(mu)u = u(p) + tau in Omega, u = nu on partial derivative Omega, where mu > 0, p > 0, tau and nu are measures on Omega and partial derivative Omega respectively. We then establish existence results for the system {-L(mu)u = is an element of v(p) + tau in Omega, -L(mu)v = is an element of u (p) over tilde + tau in Omega, u = nu, v = (nu) over tilde on partial derivative Omega, where is an element of = +/- 1, p > 0, (p) over tilde > 0, tau and (tau) over tilde are measures on Omega, nu and (nu) over tilde are measures on partial derivative Omega. We also deal with elliptic systems where the nonlinearities are more general.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info