Zde se nacházíte:
Informace o publikaci
Genes Involved in the Processes of Cell Proliferation, Migration, Adhesion, and Tissue Development as New Potential Markers of Porcine Granulosa Cellular Processes In Vitro: A Microarray Approach
Autoři | |
---|---|
Rok publikování | 2019 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | DNA and Cell Biology |
Fakulta / Pracoviště MU | |
Citace | |
www | http://dx.doi.org/10.1089/dna.2018.4467 |
Doi | http://dx.doi.org/10.1089/dna.2018.4467 |
Klíčová slova | porcine granulosa cells; In Vitro Maturation (IVM); cellular migration; proliferation; adhesion |
Popis | Proper course of folliculogenesis and oogenesis have an enormous impact on female fertility. Both processes take place in the ovary and involve not only the maturing germ cell, but also few types of somatic cells that assist the ovarian processes and mediate the dialog with the oocyte. These cells, granulosa and theca, are heavily involved in essential reproductive processes, such as ovulation, fertilization, and embryo implantation. In this study, we have used the expressive microarray approach to analyze the transcriptome of porcine granulosa cells, during short-term in vitro culture. We have further selected differentially expressed gene ontologies, involved in cell proliferation, migration, adhesion, and tissue development, namely, "cell-cell adhesion," "cell motility," "cell proliferation," "tissue development," and "tissue migration" to screen them for the possibility of discovery of new markers of those processes. A total of 303 genes, expression of which varied significantly in different culture periods and belonged to the analyzed ontology groups, were detected, of which 15 that varied the most (between 0 and 48 h of culture) were selected for validation. As the validation confirmed the transcriptomic patterns, 10 genes of biggest changes in expression (CAV1, IGFBP5, ITGB3, FN1, ITGA2, LAMB1, POSTN, FAM83D, KIF14, and CDK1) were analyzed, described, and referred to the context of the study, with the most promising new markers and further proof for the viability of the currently recognized ones detailed. Overall, the study provided valuable insight into the molecular functioning of in vitro granulosa cell cultures. |