Informace o publikaci

Three-coloring triangle-free graphs on surfaces II. 4-critical graphs in a disk

Autoři

KRÁĽ Daniel THOMAS R DVORAK Zdenek

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj JOURNAL OF COMBINATORIAL THEORY SERIES B
Citace
Doi http://dx.doi.org/10.1016/j.jctb.2018.03.001
Klíčová slova Planar graphs; Girth five; 3-coloring; Critical graphs
Popis Let G be a plane graph of girth at least five. We show that if there exists a 3-coloring Phi of a cycle C of G that does not extend to a 3-coloring of G, then G has a subgraph H on O(|C|) vertices that also has no 3-coloring extending Phi. This is asymptotically best possible and improves a previous bound of Thomassen. In the next paper of the series we will use this result and the attendant theory to prove a generalization to graphs on surfaces with several precolored cycles. (C) 2018 Elsevier Inc. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info