Informace o publikaci

First order convergence of matroids

Autoři

KARDOS F KRÁĽ Daniel LIEBENAU A MACH L

Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj European Journal of Combinatorics
Citace
Doi http://dx.doi.org/10.1016/j.ejc.2016.08.005
Popis The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a fixed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed. (C) 2016 Elsevier Ltd. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info