Informace o publikaci

Finitely forcible graphons and permutons

Autoři

GLEBOV R GRZESIK A KLIMOSOVA T KRÁĽ Daniel

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj JOURNAL OF COMBINATORIAL THEORY SERIES B
Citace
Doi http://dx.doi.org/10.1016/j.jctb.2014.07.007
Klíčová slova Combinatorial limits; Graph limits; Permutations; Quasirandomness
Popis We investigate when limits of graphs (graphons) and permutations (permutons) are uniquely determined by finitely many densities of their substructures, i.e., when they are finitely forcible. Every permuton can be associated with a graphon through the notion of permutation graphs. We find permutons that are finitely forcible but the associated graphons are not. We also show that all permutons that can be expressed as a finite combination of monotone permutons and quasirandom permutons are finitely forcible, which is the permuton counterpart of the result of Lovasz and Sos for graphons. (C) 2014 Elsevier Inc. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info