Informace o publikaci

FRACTIONAL COLORINGS OF CUBIC GRAPHS WITH LARGE GIRTH

Autoři

KARDOS F KRÁĽ Daniel J Volec

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj SIAM Journal on Discrete Mathematics
Citace
Doi http://dx.doi.org/10.1137/100812082
Klíčová slova cubic graphs; fractional coloring; large girth; random graphs; independent set
Popis We show that every (sub) cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978, which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid for random cubic graphs as well, as it improves existing lower bounds on the maximum cut in cubic graphs with large girth.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info