Informace o publikaci

Characterisation Results for Steiner Triple Systems and Their Application to Edge-Colourings of Cubic Graphs

Autoři

KRÁĽ Daniel MACAJOVA E POR A SERENI JS

Rok publikování 2010
Druh Článek v odborném periodiku
Časopis / Zdroj CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES
Citace
Doi http://dx.doi.org/10.4153/CJM-2010-021-9
Popis It is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C-14. We find three configurations such that a Steiner triple system is affine if and only if it does not contain one of these configurations. Similarly, we characterise Hall triple systems using two forbidden configurations. Our characterisations have several interesting corollaries in the area of edge-colourings of graphs. A cubic graph G is S-edge-colourable for a Steiner triple system S if its edges can be coloured with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. Among others, we show that all cubic graphs are S-edge-colourable for every non-projective non-affine point-transitive Steiner triple system S.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info