Informace o publikaci

Markov bases of binary graph models of K-4-minor free graphs

Autoři

KRÁĽ Daniel NORINE S PANGRAC O

Rok publikování 2010
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Combinatorial Theory, Series A
Citace
Doi http://dx.doi.org/10.1016/j.jcta.2009.07.007
Klíčová slova Binary graph model; Markov base; Markov width; Series-parallel graphs
Popis The Markov width of a graph is a graph invariant defined as the maximum degree of a Markov basis element for the corresponding graph model for binary contingency tables. We show that a graph has Markov width at most four if and only if it contains no K-4 as a minor, answering a question of Develin and Sullivant. We also present a lower bound of order Omega(n(2-epsilon)) on the Markov width of K-n. (C) 2009 Elsevier Inc. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info