Informace o publikaci

SHORT CYCLE COVERS OF GRAPHS WITH MINIMUM DEGREE THREE

Autoři

KAISER T Kral KRÁĽ Daniel NEJEDLY P SAMAL R Lidicky B

Rok publikování 2010
Druh Článek v odborném periodiku
Časopis / Zdroj SIAM Journal on Discrete Mathematics
Citace
Doi http://dx.doi.org/10.1137/080717468
Klíčová slova cycle cover; cycle double cover; shortest cycle cover
Popis The shortest cycle cover conjecture of Alon and Tarsi asserts that the edges of every bridgeless graph with m edges can be covered by cycles of total length at most 7m/5 = 1.400m. We show that every cubic bridgeless graph has a cycle cover of total length at most 34m/21 approximate to 1.619m, and every bridgeless graph with minimum degree three has a cycle cover of total length at most 44m/27 approximate to 1.630m.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info