
THE LAST FRACTION OF A FRACTIONAL CONJECTURE
Autoři | |
---|---|
Rok publikování | 2010 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | SIAM Journal on Discrete Mathematics |
Citace | KARDOS, F, Daniel KRÁĽ a JS SERENI. THE LAST FRACTION OF A FRACTIONAL CONJECTURE. SIAM Journal on Discrete Mathematics. Philadelphia: SIAM, 2010, roč. 24, č. 2, s. 699-707. ISSN 0895-4801. Dostupné z: https://dx.doi.org/10.1137/090779097. |
Doi | http://dx.doi.org/10.1137/090779097 |
Klíčová slova | fractional coloring; total coloring; girth |
Popis | Reed conjectured that for every epsilon > 0 and every integer Delta, there exists g such that the fractional total chromatic number of every graph with maximum degree Delta and girth at least g is at most Delta + 1 + epsilon. The conjecture was proven to be true when Delta = 3 or Delta is even. We settle the conjecture by proving it for the remaining cases. |