![Studijní programy](https://cdn.muni.cz/media/3757910/studijni-programy-student-jde-chodbou-masarykova-univerzita.jpg?mode=crop¢er=0.5,0.5&rnd=133754493890000000&heightratio=0.5&width=278)
Zde se nacházíte:
Informace o publikaci
List Colorings with Measurable Sets
Autoři | |
---|---|
Rok publikování | 2008 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of Graph Theory |
Citace | |
Doi | http://dx.doi.org/10.1002/jgt.20335 |
Klíčová slova | fractional chromatic number; Hall's theorem; list coloring; measurable sets |
Popis | The measurable list chromatic number of a graph G is the smallest number such that if each vertex v of G is assigned a set L(v) of measure in a fixed atomless measure space, then there exist sets c(v) subset of L(v) such that each c(v) has measure one and c(v) boolean AND c(v') = phi for every pair of adjacent vertices v and V. We provide a simpler proof of a measurable generalization of Hall's theorem due to Hilton and Johnson [J Graph Theory 54 (2007), 179-193] and show that the measurable list chromatic number of a finite graph G is equal to its fractional chromatic number. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 59: 229-238, 2008 |