Informace o publikaci

Coloring squares of planar graphs with girth six

Autoři

DVORAK Z KRÁĽ Daniel NEJEDLY P SKREKOVSKI R

Rok publikování 2008
Druh Článek v odborném periodiku
Časopis / Zdroj European Journal of Combinatorics
Citace
Doi http://dx.doi.org/10.1016/j.ejc.2007.11.005
Popis Wang and Lih conjectured that for every g >= 5, there exists a number M(g) such that the square of a planar graph G of girth at least g and maximum degree Delta >= M(g) is (Delta + 1)-colorable. The conjecture is known to be true for g >= 7 but false for g is an element of {5, 6}. We show that the conjecture for g = 6 is off by just one, i.e., the square of a planar graph G of girth at least. six and sufficiently large maximum degree is (Delta + 2)-colorable. (c) 2007 Elsevier Ltd. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info