Informace o publikaci

Mixed hypergraphs and other coloring problems

Autoři

KRÁĽ Daniel

Rok publikování 2007
Druh Článek v odborném periodiku
Časopis / Zdroj Discrete Mathematics
Citace
Doi http://dx.doi.org/10.1016/j.disc.2005.11.050
Klíčová slova mixed hypergraphs; graph coloring models; graph homomorphisms
Popis A mixed hypergraph is a triple (V, l, D) where V is the vertex set and l and D are families of subsets of V called l-edges and D-edges, respectively. A proper coloring of a mixed hypergraph (V, l, D) is a coloring of its vertices such that no l-edge is polychromatic and no D-edge is monochromatic. We show that mixed hypergraphs can be used to efficiently model several graph coloring problems including homomorphisms of simple graphs and multigraphs, circular colorings, (H, C, <= K)-colorings, (H, C, K)-colorings, locally surjective, locally bijective and locally injective homomorphisms, L(p, q)-labelings, the channel assignment problem, T-colorings and generalized T-colorings. (c) 2006 Elsevier B.V. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info