Zde se nacházíte:
Informace o publikaci
A revival of the girth conjecture
Autoři | |
---|---|
Rok publikování | 2004 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | JOURNAL OF COMBINATORIAL THEORY SERIES B |
Citace | |
Doi | http://dx.doi.org/10.1016/j.jctb.2004.04.003 |
Klíčová slova | edge coloring; circular coloring; snark |
Popis | We show that for each epsilon > 0, there exists a number g such that the circular chromatic index of every cubic bridgeless graph with girth at least g is at most 3 + epsilon. This contrasts to the fact (which disproved the Girth conjecture) that there are snarks of arbitrarily large girth. In particular, we show that every cubic bridgeless graph with girth at least 14 has the circular chromatic index at most 7/2. (C) 2004 Elsevier Inc. All rights reserved. |