Informace o publikaci

Locally consistent constraint satisfaction problems - (Extended abstract)

Autoři

DVORAK Z KRÁĽ Daniel PANGRAC O

Rok publikování 2004
Druh Článek v odborném periodiku
Časopis / Zdroj AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS
Citace
Popis An instance of a constraint satisfaction problem is l-consistent if any l constraints of it can be simultaneously satisfied. For a fixed constraint type P, rho(l)(P) denotes the largest ratio of constraints which can be satisfied in any l-consistent instance. In this paper, we study locally consistent constraint satisfaction problems for constraints which are Boolean predicates. We determine the values of rho(l)(P) for all I and all Boolean predicates which have a certain natural property which we call 1-extendibility as well as for all Boolean predicates of arity at most three. All our results hold for both the unweighted and weighted versions of the problem.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info