Zde se nacházíte:
Informace o publikaci
Mimimum degree and the number of chords
Autoři | |
---|---|
Rok publikování | 2003 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | ARS COMBINATORIA |
Citace | |
Popis | We address the following problem: What minimum degree forces a graph on n vertices to have a cycle with at least c chords? We prove that any graph with minimum degree delta has a cycle with at least (delta+1)(delta-2)/2 chords. We investigate asymptotic behaviour for large n and c and we consider the special case where n = c. |