Informace o publikaci

Iterated algebraic injectivity and the faithfulness conjecture

Logo poskytovatele
Autoři

BOURKE John Denis

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Higher Structures
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://journals.mq.edu.au/index.php/higher_structures/article/view/120/81
Klíčová slova algebraic injective; globular theory; faithfulness conjecture
Popis Algebraic injectivity was introduced to capture homotopical structures like algebraic Kan complexes. But at a much simpler level, it allows one to describe sets with operations subject to no equations. If one wishes to add equations (or operations of greater complexity) then it is natural to consider iterated algebraic injectives, which we introduce and study in the present paper. Our main application concerns Grothendieck's weak omega-groupoids, introduced in Pursuing Stacks, and the closely related definition of weak omega-category due to Maltsiniotis. Using omega iterations we describe these as iterated algebraic injectives and, via this correspondence, prove the faithfulness conjecture of Maltsiniotis. Through work of Ara, this implies a tight correspondence between the weak omega-categories of Maltsiniotis and those of Batanin/Leinster.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info