Zde se nacházíte:
Informace o publikaci
Energy conservation for inhomogeneous incompressible and compressible Euler equations
Autoři | |
---|---|
Rok publikování | 2020 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of Differential Equations |
Fakulta / Pracoviště MU | |
Citace | |
www | https://doi.org/10.1016/j.jde.2020.05.025 |
Doi | http://dx.doi.org/10.1016/j.jde.2020.05.025 |
Klíčová slova | Inhomogeneous incompressible Euler equation; Compressible isentropic Euler equation; Energy; conservation; Onsager's conjecture |
Popis | Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a suitable test function, the spatial regularity for the density is only required to be of order 2/3 in the incompressible case, and of order 1/3 in the compressible case. When the density is constant, we recover the existing results for classical incompressible Euler equation. (c) 2020 Published by Elsevier Inc. |
Související projekty: |