Informace o publikaci

Green's formulas and Poisson's equation for bosonic Laplacians

Autoři

DING Chao RYAN John

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematical Methods in the Applied Sciences
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1002/mma.6922
Doi http://dx.doi.org/10.1002/mma.6922
Klíčová slova bosonic Laplacians; green's formula; Poisson's equation; representation formula
Popis A bosonic Laplacian is a conformally invariant second-order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher-order irreducible representations of the special orthogonal group. In this paper, we firstly introduce the motivation for study of the generalized Maxwell operators and bosonic Laplacians (also known as the higher spin Laplace operators). Then, with the help of connections between Rarita-Schwinger type operators and bosonic Laplacians, we solve Poisson's equation for bosonic Laplacians. A representation formula for bounded solutions to Poisson's equation in Euclidean space is also provided. In the end, we provide Green's formulas for bosonic Laplacians in scalar-valued and Clifford-valued cases, respectively. These formulas reveal that bosonic Laplacians are self-adjoint with respect to a givenL(2)inner product on certain compact supported function spaces.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info