Zde se nacházíte:
Informace o publikaci
ArfB can displace mRNA to rescue stalled ribosomes
Autoři | |
---|---|
Rok publikování | 2020 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Nature Communications |
Fakulta / Pracoviště MU | |
Citace | |
www | https://www.nature.com/articles/s41467-020-19370-z.pdf |
Doi | http://dx.doi.org/10.1038/s41467-020-19370-z |
Klíčová slova | PEPTIDYL-TRANSFER-RNA; TRANSLATION TERMINATION; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; ESCHERICHIA-COLI; RELEASE; VISUALIZATION; MECHANISM; MOVEMENT; CODON |
Popis | Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal alpha -helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 angstrom and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths. Alternative rescue factor B (ArfB) is an enzyme that releases peptides from stalled ribosomes to allow ribosome recycling. Here the authors carry-out cryo-EM analyses of 70S ribosomes complexed with ArfB on either a short or longer mRNA to reveal distinct modes of ArfB function. |