Informace o publikaci

Accurate prediction of kinase-substrate networks using knowledge graphs

Autoři

NOVÁČEK Vít MCGAURAN Gavin MATALLANAS David BLANCO Adrián Vallejo CONCA Piero MUNOZ Emir COSTABELLO Luca KANAKARAJ Kamalesh NAWAZ Zeeshan WALSH Brian MOHAMED Sameh K VANDENBUSSCHE Pierre-Yves RYAN Colm J KOLCH Walter FEY Dirk

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj PLoS Computational Biology
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Doi http://dx.doi.org/10.1371/journal.pcbi.1007578
Klíčová slova knowledge graphs; kinase-substrate networks; phosphorylation prediction; relational machine learning
Přiložené soubory
Popis Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info