Informace o publikaci

Cycles of length three and four in tournaments

Autoři

CHAN Timothy F. N. GRZESIK Andrzej KRÁĽ Daniel NOEL Jonathan A.

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Combinatorial Theory, Series A
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1016/j.jcta.2020.105276
Doi http://dx.doi.org/10.1016/j.jcta.2020.105276
Klíčová slova Tournaments; Cycles; Extremal combinatorics
Popis Linial and Morgenstern conjectured that, among all n-vertex tournaments with d((n)(3)) cycles of length three, the number of cycles of length four is asymptotically minimized by a random blow-up of a transitive tournament with all but one part of equal size and one smaller part. We prove the conjecture for d >= 1/36 by analyzing the possible spectrum of adjacency matrices of tournaments. We also demonstrate that the family of extremal examples is broader than expected and give its full description for d >= 1/16. (C) 2020 Elsevier Inc. All rights reserved.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info