Informace o publikaci

Better Model, Worse Predictions: The Dangers in Student Model Comparisons

Autoři

ČECHÁK Jaroslav PELÁNEK Radek

Rok publikování 2021
Druh Článek ve sborníku
Konference International Conference on Artificial Intelligence in Education
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-030-78292-4_40
Klíčová slova Additive factor model; Student modeling; Simulation; Model comparison
Popis The additive factor model is a widely used tool for analyzing educational data, yet it is often used as an off-the-shelf solution without considering implementation details. A common practice is to compare multiple additive factor models, choose the one with the best predictive accuracy, and interpret the parameters of the model as evidence of student learning. In this work, we use simulated data to show that in certain situations, this approach can lead to misleading results. Specifically, we show how student skill distribution affects estimates of other model parameters.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info