Informace o publikaci

On Lexicographic Proof Rules for Probabilistic Termination

Autoři

CHATTERJEE Krishnendu GOHARSHADY Ehsan Kafshdar NOVOTNÝ Petr ZÁREVÚCKY Jiří ŽIKELIĆ Djordje

Rok publikování 2021
Druh Článek ve sborníku
Konference 24th International Symposium on Formal Methods, FM 2021
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-030-90870-6_33
Klíčová slova program analysis; probabilistic programs; almost-sure termination; martingales
Popis We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in LexRSM not existing even for simple terminating programs. Our contributions are twofold: First, we introduce a generalization of LexRSMs which allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info