Informace o publikaci

On 13-Crossing-Critical Graphs with Arbitrarily Large Degrees

Logo poskytovatele
Autoři

HLINĚNÝ Petr KORBELA Michal

Rok publikování 2021
Druh Článek ve sborníku
Konference Extended Abstracts EuroComb 2021. Trends in Mathematics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://arxiv.org/abs/2105.01104
Doi http://dx.doi.org/10.1007/978-3-030-83823-2_9
Klíčová slova Graph; Crossing number; Crossing-critical families
Popis A surprising result of Bokal et al. proved that the exact minimum value of c such that c-crossing-critical graphs do not have bounded maximum degree is c=13. The key to the result is an inductive construction of a family of 13-crossing-critical graphs with many vertices of arbitrarily high degrees. While the inductive part of the construction is rather easy, it all relies on the fact that a certain 17-vertex base graph has the crossing number 13, which was originally verified only by a machine-readable computer proof. We now provide a relatively short self-contained computer-free proof.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info