
Dynamical System Related to Primal–Dual Splitting Projection Methods
Autoři | |
---|---|
Rok publikování | 2023 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of Dynamics and Differential Equations |
Fakulta / Pracoviště MU | |
Citace | BEDNARCZUK, E. M., Raj Narayan DHARA a K. E. RUTKOWSKI. Dynamical System Related to Primal–Dual Splitting Projection Methods. Journal of Dynamics and Differential Equations. Springer, 2023, roč. 35, č. 4, s. 3433-3458. ISSN 1040-7294. Dostupné z: https://dx.doi.org/10.1007/s10884-021-10068-4. |
www | https://link.springer.com/article/10.1007/s10884-021-10068-4 |
Doi | http://dx.doi.org/10.1007/s10884-021-10068-4 |
Klíčová slova | Autonomous ordinary differential equations; Locally Lipschitz vector field; Existence and uniqueness of solutions; Extendability of solutions; Projected dynamical systems |
Popis | We introduce a dynamical system to the problem of finding zeros of the sum of two maximally monotone operators. We investigate the existence, uniqueness and extendability of solutions to this dynamical system in a Hilbert space. We prove that the trajectories of the proposed dynamical system converge strongly to a primal-dual solution of the considered problem. Under explicit time discretization of the dynamical system we obtain the best approximation algorithm for solving coupled monotone inclusion problem. |
Související projekty: |