Informace o publikaci

Dynamical System Related to Primal–Dual Splitting Projection Methods

Autoři

BEDNARCZUK E. M. DHARA Raj Narayan RUTKOWSKI K. E.

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Dynamics and Differential Equations
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s10884-021-10068-4
Doi http://dx.doi.org/10.1007/s10884-021-10068-4
Klíčová slova Autonomous ordinary differential equations; Locally Lipschitz vector field; Existence and uniqueness of solutions; Extendability of solutions; Projected dynamical systems
Popis We introduce a dynamical system to the problem of finding zeros of the sum of two maximally monotone operators. We investigate the existence, uniqueness and extendability of solutions to this dynamical system in a Hilbert space. We prove that the trajectories of the proposed dynamical system converge strongly to a primal-dual solution of the considered problem. Under explicit time discretization of the dynamical system we obtain the best approximation algorithm for solving coupled monotone inclusion problem.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info