Informace o publikaci

SPEED21: Speed Climbing Motion Dataset

Logo poskytovatele
Autoři

ELIÁŠ Petr ŠKVARLOVÁ Veronika ZEZULA Pavel

Rok publikování 2021
Druh Článek ve sborníku
Konference MMSports'21: Proceedings of the 4th International Workshop on Multimedia Content Analysis in Sports
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://dl.acm.org/doi/10.1145/3475722.3482795
Doi http://dx.doi.org/10.1145/3475722.3482795
Klíčová slova speed climbing; sports dataset; 2d skeleton series; k-nn search; similarity
Popis With the recent advances in computer vision and deep learning, the research interest in video-based and skeleton-based sports analysis is growing. Also, speed climbing as a sport is on the rise, being included as an Olympic sport in Tokyo 2020. This work aims to connect both of these worlds. First, a dataset of 362 speed climbing performances is provided for the community of domain experts and practitioners in human motion understanding and sports analysis. The dataset annotates pre-segmented performances of 55 world elite athletes in the form of 2D skeleton sequences extracted from world competition events videos. Secondly, a high descriptiveness and usability of 2D skeleton data is demonstrated in the search scenario that matches climbers by the similarities in their climbing style with high accuracy. The high k-NN search precision above 90 % is achieved by a synergic combination of suitable representation with a semi-dependent variant of Dynamic Time Warping (DTW). The proposed DTW variant computes distances separately across individual semantic body parts (e.g., hands and feet) whose atoms (joints or angles) are wired together for the temporal alignment.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info