Informace o publikaci

The equivalence theory for infinite type hypersurfaces in C^2

Autoři

EBENFELT Peter KOSSOVSKIY Ilya LAMEL Bernhard

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Transactions of the American Mathematical Society
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.ams.org/journals/tran/2022-375-06/S0002-9947-2022-08627-X/
Doi http://dx.doi.org/10.1090/tran/8627
Klíčová slova Real submanifolds in complex manifolds; CR manifolds as boundaries of domains
Popis We develop a classification theory for real-analytic hypersurfaces in in the case when the hypersurface is of infinite type at the reference point. This is the remaining, not yet understood case in in the Probleme local, formulated by H. Poincaré in 1907 and asking for a complete biholomorphic classification of real hypersurfaces in complex space. One novel aspect of our results is a notion of smooth normal forms for real-analytic hypersurfaces. We rely fundamentally on the recently developed CR-DS technique in CR-geometry.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info