Informace o publikaci

Towards Clinical Practice: Design and Implementation of Convolutional Neural Network-Based Assistive Diagnosis System for COVID-19 Case Detection from Chest X-Ray Images

Autoři

KVAK Daniel CHROMCOVÁ Anna BENDÍK Marián

Rok publikování 2022
Druh Článek v odborném periodiku (nerecenzovaný)
Citace
Popis One of the critical tools for early detection and subsequent evaluation of the incidence of lung diseases is chest radiography. This study presents a real-world implementation of a convolutional neural network (CNN) based Carebot Covid app to detect COVID-19 from chest X-ray (CXR) images. Our proposed model takes the form of a simple and intuitive application. Used CNN can be deployed as a STOW-RS prediction endpoint for direct implementation into DICOM viewers. The results of this study show that the deep learning model based on DenseNet and ResNet architecture can detect SARS-CoV-2 from CXR images with precision of 0.981, recall of 0.962 and AP of 0.993.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info