Informace o publikaci

Infinitesimal symmetries of weakly pseudoconvex manifolds

Logo poskytovatele
Logo poskytovatele
Autoři

KIM Shin-Young KOLÁŘ Martin

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematische Zeitschrift
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s00209-021-02873-w
Doi http://dx.doi.org/10.1007/s00209-021-02873-w
Klíčová slova FINITE JET DETERMINATION; CR AUTOMORPHISMS; REAL HYPERSURFACES; NEUMANN PROBLEM; NORMAL FORMS
Popis We consider weakly pseudoconvex hypersurfaces with polynomial models in C-N and their symmetry algebras. In themost prominent case of special models, given by sums of squares of polynomials, we give their complete classification. In particular, we prove that such manifolds do not admit any nonlinear symmetries, depending only on complex tangential variables, nor do they admit real or nilpotent linear symmetries. This leads to a sharp 2-jet determination result for local automorphisms. We also give partial results in the general case and a more detailed description of the graded components in complex dimension three. The results also provide an important necessary step for solving the local equivalence problem on such manifolds.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info