Informace o publikaci

Eigenvalue-flipping algorithm for matrix Monte Carlo

Autoři

KOVÁČIK Samuel TEKEL Juraj

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of High Energy Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/JHEP04(2022)149
Doi http://dx.doi.org/10.1007/JHEP04(2022)149
Klíčová slova Algorithms and Theoretical Developments; Matrix Models; Non-Commutative Geometry; Lattice Quantum Field Theory
Popis Many physical systems can be described in terms of matrix models that we often cannot solve analytically. Fortunately, they can be studied numerically in a straightforward way. Many commonly used algorithms follow the Monte Carlo method, which is efficient for small matrix sizes but cannot guarantee ergodicity when working with large ones. In this paper, we propose an improvement of the algorithm that, for a large class of matrix models, allows to tunnel between various vacua in a proficient way, where sign change of eigenvalues is proposed externally. We test the method on two models: the pure potential matrix model and the scalar field theory on the fuzzy sphere.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info